SEST PRACTICES FOR
MPLEMENTING SOFTWARE
QUALITY INTELLIGENCE
WITH SEALIGHTS

TABLE OF CONTENTS

STEP 5 - ASSESS OVERALL QUALITY TRENDS

STEP 6 - OPTIMIZING EFFICIENCY/VELOCITY

SUMMARY .. s

USEFULLINKSo

Best Practices for Implementing Software Quality Intelligence with Sealights

INTRODUCTIONo

STEP 1 - IDENTIFY NEW/MODIFIED CODE

STEP 2 - ANALYZE COVERAGE DATA

STEP 3 - DEFINE QUALITY POLICIES

STEP 4 - PERFORM A RETROSPECTIVE ANALYSIS

Sea&ghts

Sea&ghts

INTRODUCTION

Q Whilst changes should always be regarded as positive,
often change can become the enemy of quality if

not executed and managed rigorously. That is why at
SealLights we focus on providing you with the ability to
capture and prioritise changes in your SDLC, but at the

same time avoid the unnecessary time, effort, and cost

of managing things that are not impacted by changes.

There is a widely used business adage “If you can't measure it, you
can'timprove it” which should only be applied sparingly to avoid
another business adage “analysis paralysis”. Fortunately, Sealights
provides constant measurement metrics in real-time that can be
consumed as and when required.

In this section we will review the Sealights best practices for how
to measure the impact of changes to your applications and improve
the quality of what is delivered. This assumes that you already
have completed the steps to integrate Sealights with your ClI (Build
Scanner) and testing frameworks (Test Listeners).

Best Practices for Implementing Software Quality Intelligence with SealLights 3

Introduction Seal;ghts

TYPICAL SPRINT CYCLE WITH SEALIGHTS

Seaﬁgh&s

Test Gap Analysis

Manager analysis of Sprint Developer in IDE

outcome (Code, Quality)

Seaﬁghts

Quality Gates Pull Request Integration

>

>

Build is being promoted to > Code Reviewer / Manager

master /production review and approve merging

of the code

Seaﬁg}wg > Unit Tests

Quality Trend Reports

Functional / E2E Tests

We will break up the 6 steps that we recommend you follow to
minimize quality risks into the following logical phases, for specific
personas, aligned with a typical sprint cycle as shown above:

> Identify New/Modified Code in the background without
impacting existing development
> Guide the software development team to the best decisions

> Determine release readiness, identify and prevent untested code
changes making it to production

> Direct teams to where to develop and execute the minimal
number of tests

Best Practices for Implementing Software Quality Intelligence with SeaLights 4

Sea&ghts

STEP 1 - IDENTIFY
NEW/MODIFIED CODE

PERSONAS AND CADENCE

The first step, or “Line of Defence”, in
implementing a Software Quality Intelligence
process involves putting in place a consistent
methodology that will enable you to capture code
coverage across all test stages (unit, component,
functional, integration, sanity, API, user
acceptance, manual, etc.) and start the process of
identifying quality risks.

Typically the best practices that will be developed and
implemented in this step would be led by, but not be limited

to, the Quality Engineering organization. Once established we
recommend that the scope of the scanned code is validated for
every new application and service, new code labels are created
to identify new/modified teams and functional areas. Reference
Builds should also be regularly updated as the lifecycle of the
application progresses.

Best Practices for Implementing Software Quality Intelligence with Sealights

Step 1 - Identify New/Modified Code

SeaL.ghj.g Dashboard Ouality Analytics (RERT)

= FITER

Seal;ghts

FUNCTIONAL OVERVIEW
Before we review the process let’s look at the Seal.ights functionality
that enables this, starting with the Seal.ights Dashboard.

TGAReport TestOptimization (REW) Cockpit (7] ﬂ o

Coverage Type: Method Q, Search

APP /HRANCH BUILD 4 OVERALL COVERAGE REFERENCE BUILD MODSFIED COVERAGE CUALITY RISKS QUALITY GATE
L]
Integrtion Buid sealights-sl-cloud-release 1101960 86% 1111920
crigin/master Fab 7, 2022 (T2 honars g Ti, Wyina DN Fal i, 2025 {% days ago) 65% 28 Failed
TEST STAGE DURATION TESTS FAILED SKIPRED OVERALL QUALITY RISKS
-
Campanent Tests 0:03:08 501 i 248 9% 5% 77
.
Manual Tests 0:00:29 2 i 0 0% 0% 68
-
Nightly AR Tests 64250 284 0 15 37% 42% 47 .
™~ E
Sanity Imtegration (114 wis 4] 02952 57 0 & 34% 47% 36
.
Unit Tests 0:07:44 16397 i 2 78% 62% 26
0643 87% 10638 "
sealights-sl-cloud-build-service 1.0 Lo gge o pal
mlgw'r';am Faty 1, 2022 (11 bt 0g P ey T, 88% 2 Passed
10414 1.0.401 "
sealights-si-clowd-infra2 0. A g
uigimams Feb 7, 2007 {14 ours 2y 76% Feb 1, 2022 1 e agn) 7% 3 Tamngc

Figure 1: Sealights Dashboard

Collation of data from multiple sources across the software
development pipeline, such as code change, test stages, code
execution, Cl tools, production data, historical build information,
and more populates the Sealights Dashboard under the following
categories:

> Overall Coverage

> Modified Coverage

Best Practices for Implementing Software Quality Intelligence with SeaLights 6

Step 1 - Identify New/Modified Code Sea&ghts

Overall Coverage identifies the percentage of methods that have
been tested by one or more test stages using the simple formula =
number of tested methods/overall number of methods.

Example: If you had an application or service that contained a
total of 100 methods and 70 of those methods had been tested by

one or more test stages then the overall coverage would be 70%.

Modified Coverage identifies the percentage of new or modified
methods that have been tested by one or more test stages using
the simple formula = number of tested new or modified methods/

number of new or modified methods.

Example: If you modified 10 of the 100 methods, and if 8 of those
modified methods were tested by one or more test stages, then

the modified coverage would be 80%.

Best Practices for Implementing Software Quality Intelligence with Sealights

Step 1 - Identify New/Modified Code

Seal;ghts

New or modified methods that have not been tested by any test

stage represent a Quality Risk.

Example: The 2 new or modified methods that were not tested
by any test stage in the example above would appear as 2 quality

risks in the SealLights Dashboard.

Seaf;ghu Dashboard Ouality Analytics (W) — TGAReport TestOptimization (W) Cockpit

ERALL
COVERAGE

72411 17361 0 273 86%

DURATION TESTS FAILED SKIPPED
< Quality Risks | soaligntesicloudreionse oigin/master 11,71960 [ref; 1.7.11920] Entire Builld =

= FILTER Emue Build = Coverage Type: Method
FILE QUALITY RISKS L HIGH PRIGRITY
sealights-sl-cloud-pleprocessor/ iy msg- s/recaloulate-test-stage-with-exc) 0 15 12
ights-sl-cloud: el o I gep 5
ights-sl-cloud-pt i s 2
ght I-cloud-ns lib ty 4 | 15 2 L]
s sealights-shcloud-infraZ/lib/ orage, ¢ storage-adapter. iz 1 .
+ sealights-slcloud ptoprocessor/lidta/tiabl-tase s 1
sealights-sl-cloud-ple-processor/lib/tia//tia-service ts 1
seafighta-sl-cloud-tests-mansgement senvice/service.ts 1
ights-sh-cloud-build il dafla 1 ®
seaightzslcloud-api-gataway/lib/ rovtes/pte-v1 /blis 1 L]
» seafights-sl-cloud-api-gateway/lib/routes/ ple-vifroutes s 1 L]

1-110f11 1€ € » 5|

Figure 2: Quality Risks

420

MODFED OUAALITY
COVERAGE RISHS

65% 28

Q, Search

CONTRIBUTORS

@ Kamil Hark
committed 40 weeks ago

W Commil Message
e3-galect-object-content @

il ﬁ

New or modified methods are determined by comparing the latest
build with a Reference Build. By default, the Reference Build is the
build prior to the current build in each branch. It can, however, be

set (or changed) by the user by hovering over the build in the build

history that you wish to specify as the Reference Build and setting

it with the flag icon.

Best Practices for Implementing Software Quality Intelligence with SeaLights

Step 1 - Identify New/Modified Code Seaﬁgh&s

Best practice for setting the Reference Build is dependent upon
where you are in the lifecycle of the application but here are some
recommendations:

> The first build from the current sprint
> The last build from the previous sprint

> The last build promoted to the next branch (e.g. feature-branch

Important: The Reference to develop to main)

Build setting will only apply > The last build from the previous sprint

after the next build. > The last build pushed to Production

This is displayed in Figure 3: Defining the Reference Build below.

4D Build History | sealights-sl-sloud-release

STANNED OVERALL MODIFIED QuaLTy
R e METHODS ~ COVERAGE COVERMGE Risks JUALITY GATE

1.1.11925
Feb ¥, 2022 {4 duys oga}

1.1.71924
Feb 3, 072 (¢ dayl ago)

110182
Fab3, 7037 {4 days aga)

1101922
Feb 32022 15 davs agal

1191921
FabiE, 2022 (5 days ago)

[RRARLLE
| Fab I, 222 {5 duys ago}
Current Reference Build |

[707, 701 (5 days sg0)

11008
Fel 2, 3023 {5 dayy ago)

11m7
Faby 2, 2022 {5 daya ago)

1111916
Fab 2, 2027 {5 diyd aga)

11104
Fob 2, 2027 (& days ago}

Figure 3: Defining the
Reference Build

Best Practices for Implementing Software Quality Intelligence with Sealights 9

Step 1 - Identify New/Modified Code

Important: The code labels
may be applied to the

entire application, Classes,
Folder, File paths, and

Files. However, we strongly
recommend that you DO NOT
apply code labels at the files
level as it will not include
new files that are added to
the Folder/Class.will only
apply after the next build.

Sea&ghts

You also have the option to define Ignored Code to exclude code
that is either auto-generated, getters, setters, default constructors,
deprecated code, and other irrelevant code areas such as third-
party code. Ignored Code will be removed from the Quality Risk and
Coverage analysis processes.

Code Labels allow you to divide your code into areas of interest by
defining categories representing either teams (Development, QA,
etc), Functional Areas (Login, Reports, etc) or any division you'd like
to see within your codebase. Furthermore, under each category,
you can define labels that will represent the code area relevant to
that label. When using the Sealights dashboard you can filter your
view according to these categories and labels defined here. You
can also define labels as “High Priority” so Quality Risks around that
label will be highlighted.

For applications that consist of multiple components or services,
you will report these components individually, before grouping
them as one application in an Integration Build, on which cross-
component tests will run against (see the example in Figure 7:
Sealights Dashboard).

Best Practices for Implementing Software Quality Intelligence with Sealights 10

Step 1 - Identify New/Modified Code Sea&ghts

IDENTIFY NEW / MODIFIED CODE PROCESS OVERVIEW

In this phase of the overall process, we have reviewed the best
practice for using the Sealights functionality to establish a
consistent methodology to identify quality risks. To summarise:

1. Define the scope of the scanned code for the application,
ignoring the irrelevant code

2. For the code in scope, define code labels for teams, functional

areas, etc.

3. Set Reference Builds in line with where you are in your
application development lifecycle

4. Where appropriate, create an Integration Build

Having implemented this consistent methodology, you can now
use the data that has been gathered by Seal.ights to effect
increased collaboration across your teams and make better
informed decisions based on the improved, centralized visibility of
where your quality risks are on your journey to build a strategy to
eradicate defects from your production applications.

Best Practices for Implementing Software Quality Intelligence with SealLights

1

Sea&ghts

STEP 2 - ANALYZE
COVERAGE DATA

PERSONAS AND CADENCE

The second step, or “Line of Defence”,

in implementing a Software Quality
Intelligence process involves applying the
measurements gathered in the “Identify”
phase to drive improved quality across

all applications and services that are
being reported to Sealights through the
following Sealights features:

> Using the Code Viewer to view coverage data

> Analyzing Quality Risks

Code Reviewer functionality provided by the Sealights Chrome
Extension is typically used by the code reviewer or managers to
review and comment on changes prior to approving the merge

of the pull request. The review should be a collaborative process

involving the software development and quality engineering teams

who will look at the UCCs identified by Sealights and then decide
if the impact of the UCCs meet the repository’s contributing
guidelines and other quality standards.

Best Practices for Implementing Software Quality Intelligence with Sealights

12

Step 2 - Analyze Coverage Data Sea&ghts

FUNCTIONAL OVERVIEW
Before we review the process let’s look at the Seal.ights

functionality that enables this.

Pullrequests Issues Marketplace Explors

& Sealights [SL.Web.App rrivata G Watch 4 - 7. Fark £r Star 1
£ Code) lesues Il Pull requests 7 (5 Actions [Projects 0 wiki) Security | Insights
Il 7Open - 581 Closed Agstnor - Label = Projects = Milestones = Reviews = Asgignes = Sort =
11 [SLDEV-10565] shaow alert on upload empty csv # 5072 Untested Code Changes

¥SEE apened 21 hourt 490 by Yuval-Ben-Arle - Anproved
I [SLDEV-10439] Configured eslint parser for HTML files and added stylelint for SASS & 5155
#5340 opensd 15 deys ago by e-koder - Review requred
Il [SLDEV-10382] remove usage of extend and use mixins instead + 6211 (mi]

WS2B opened 21 days 850 by s-tocer « Revie renided

I [SLDEV=10130] storybook ion.json inside storybook folder « 3

8479 opaned on 25 Dec 2021 by e-koder + Appraved

1! [SLDEV-10104] Dynamic table changes and trend report list implementation [WIP] x

#4780 opaned on 20 Oec 2021 by e-koder - Braft

1i [SLDEV-9033] Replace old zxcvbn lib with typescript implementation =

#430 haveki + Doaft

I3 [SLDEV-9864] created shared chart, chart container and shared loading -~ enhancement

#4776 apenzd on 30 Nov 2071 by Yuval-Ben-Ania - Review raguired

{} PraTipl Ears burning? Gat @AndyAtSealights mantions with manticns: ArdyAtSaalights

O © 7072 GitHub, Int Terms Frivacy Seaurity Statis Diocs Coptact GitHub Fricing AP Training Biog About

Figure 4: Identifying Untested
Code Changes with the
Sealights Chrome Extension
(Pull Request list)

USING THE CODE VIEWER

The Sealights Chrome Extension presents Untested Code
Changes (UCCs) which may represent Quality Risks in an overlay
over Pull Request lists and individual Pull Requests.

> The Sealights Chrome Extension is supported on all popular
Source Control Management (SCM) platforms, for example
GitHub, GitLab, Bitbucket, TFS, VSTS.

Each Pull Request that Sealights has UCC data on is annotated
with the number of UCCs in the Pull Request as displayed in Figure
4: |dentifying Untested Code Changes with the Sealights Chrome

Extension (Pull Request list) above.

Best Practices for Implementing Software Quality Intelligence with Sealights 13

Step 2 - Analyze Coverage Data Sea&ghts

A full list of changed files from all commits, up to and including
the latest commit, is displayed in the Files Changed tab for each

individual Pull Request as shown below.

1 or jump e Pull requests issues Markelplace Explore

& Sealights [SLWeb.App

Private G Watch 4 = Y Fork T Stac 1 -

<» Code) Issues 11 Pull requests 7) Actions [Projects [0 wiki [0 Security [~ Insights

[SLDEV-10565] show alert on upload empty csv #568 <> Code >

1l ope Yuval-Ben-Arle wants 1o merme 6 commits into naster from 185€5-show=alert=on-upload=tapty-csy [
< " gy M iadified Code Owerall Code New/Modified & Unsestad Code cmriupa
@ Sealights Passed Al Test Stages = 9% Goverage 5% Caverage @ 5012 Elamants 20877 :
U Corwersation 0 o Commits 8 El Checks 2 [E Féeschanged 4 +13 -2 mmmm
Changes from all commits~ File filter = Comversations ~ Jumpto - Eie Of4fiesviewed (D) [ERTERE
vElm src/applcore/models/alert-diatog.nodelits (o O Viewed
2 @8 -18,4 +19,5 @ export interface AlertDialoglata {
18 14 showInput?: boolesn:
11 11 inputialue?s stringy
12 12 inputlabel?: string:
13 + clesefnConfirm?: boolean;
14 +
v ELle srofapp/shared/diatog/ conponents /alert-dialag /alert-dialog. compenent . hitsl [0 1 Viewed
® 1 <sl-dialog [title]="config.title's
2 <ng—contalier content>
3 =div classe"sl=Tlexbox=colunn 51=-Tlexbos-gap-16">
4 <p [innerHTML I="con fig.message”>-</px
1 1 <div #ngli="config. showInput" class="51-1lexbox-colums 51-1lexbox-gop-8">
® s <Label #ngIf="config.inputiabel” rlass="input-lsbel uppercase sl-typography-label "ingut-values{{onfig, inputlabel}be/label>
7 7 <input 1g="input-walue"
]] plnputText
] 19

17 [ngMedal

13 autocorre
spellchecks
sutocom

=5pan gl Ts"er ror” Clacse”s 1=typagraphy=tody=med lum ercors{{ error H/spans
<1
1 iners
L] L] =ng—container actions>
o = 2 =button snglfs'centig.cancelButtonCaption?. Length®
2 [mat-dialeg-closel ="true"
3 T} tlas typography—Link—sction”
24 ART-bu
35 [disabled] ="1sLoad ing" >
26 {{ centig.cancelButtontaptian }}
7 <foutton>
L} =BUTton Class="new-gesign”
29 |disabled]="isLasding | | {canfigl.showlnpat 56 |inputiValusl”

k[|mat=dialog=-close] =" config. closelnConfim™
I 1 nat-butten
o u 32 el pntanf irmi >
2 13 {4 config.canf irmButtosCaption }}

34 35 </fng-cantal

a

=f51=dialog>

Figure 5: Identifying Untested
Code Changes with the
Sealights Chrome Extension
(Individual Pull Request)

Best Practices for Implementing Software Quality Intelligence with Sealights 14

Step 2 - Analyze Coverage Data

o 27

28 2

@ = 29
I+

30 1

@ 32

Figure é: Untested C
Change annota

Sea&ghts

The metrics reflect the selected test stage and the coverage type
which can be:

> A single coverage type (method or branch)

> All coverage types (if the repository provides metrics of multiple

coverage types)

Each line of code that is identified as containing an UCC will be
annotated by a red diamond as shown below.

=/button=
<button class="new-design”

{disabled]="isLoading || (config?.showInput && !inputValue)®
[mat-dialog-close]l="config.clesednContirm"

mat-button

felickl="gnConfirm| }"=

ode
tion

CODE REVIEW AND APPROVAL BEST PRACTICE

Code Reviewer functionality provided by the Sealights Chrome
Extension is typically used by the code reviewer or managers to
review and comment on changes prior to approving the merge

of the pull request. The review should be a collaborative process
involving the software development and quality engineering

teams who will look at the UCCs identified by Sealights and then
decide if the impact of the UCCs meet the repository’s contributing
guidelines and other quality standards.

To decide whether to approve a pull request you should review

the results within the Pull Request view in your SCM, as shown in
Figure 4: Identifying Untested Code Changes with the Sealights
Chrome Extension (Pull Request list). This will highlight the number
of UCCs per Pull Request.

Selecting a specific Pull Request and selecting the Files Changed
tab will enable you to see the UCCs inline in your SCM, denoted

by a red diamond as shown in Figure 6: Untested Code Change
annotation. This is where the software development and quality
engineering teams collaborate to decide on whether the code is of
suitable quality to be merged.

Best Practices for Implementing Software Quality Intelligence with Sealights 15

Step 2 - Analyze Coverage Data

@ sesliahis

Changes from all commits =

U Conversation 0

Figure 7: Example of setting Pull
Request Review Status in GitHub

showInput?: boolean;
inputWalee?: string;
inputiabel?: string;

closeOnConfirm?: boolean;

@8 -27,6 +27,7 @e

<button class="new-design"

(clickl="onConfirm{)"=

{{ config.confirmButtonCaption }}

Seal;ghts

After a pull request is opened, anyone with read access can review
and comment on the changes it proposes. You can also suggest
specific changes to lines of code, which the author can apply
directly from the pull request.

Repository owners and collaborators can request a pull request review
from a specific person. Organization members can also request a pull
request review from a team with read access to the repository.

Reviews allow for discussion of proposed changes and help ensure
that the changes meet the repository’s contributing guidelines and
other quality standards. You can define which individuals or teams
own certain types or areas of code in a CODEOWNERS file. When a
pull request modifies code that has a defined owner, that individual
or team will automatically be requested as a reviewer.

A review has three possible statuses:

> Comment: Submit general feedback without explicitly approving
the changes or requesting additional changes.

> Approve: Submit feedback and approve merging the changes
proposed in the pull request.

> Request changes: Submit feedback that must be addressed
before the pull request can be merged.

src/app/fcore/models/alert-dialog.model. ts Lf—‘

New/Modified Gode Qverall Code New/Modified & Untested Code ool
g% Coverage 5 Coverage .' 501 2 Elements 20.877 :
Fl Checks 2 [@ Files changed 4 #15 -2 EE.
File filter » Conversations» Jumptow (Gt 0/ 4files viewed (O Review changes =
Finish your review x
5 . = = A= o -
B8R -10,4 +18,5 @5 export interface AlertDialogbata { Write Praview HB I =& == @ & «

Leave s comment

Attach files by dragging & dropping, sefecting or pasting them. co

sro/appfshared/dialog/components/alert-dialog/alert-dialog. co

@ Comment
Submit general feedback without explicit approval

() Approve
Submit feediback approving these changes.

ldisabled]="isLoading || (config?.showInput && () Reguestchanges
[mat-iialog-closel="contig. clesednCont irm" Submit feadback suggesting changes.

Best Practices for Implementing Software Quality Intelligence with SeaLights 16

Step 2 - Analyze Coverage Data

Dasnboard

Sealights

< Quality Risks |

Quality Analytics. [NEw)

TGA Report

= FILTER

FLE

sealights-skcloud-build-service/likv'dals/build-dal ts

Figure 8: Analyzing Quality
Risks (Navigating to your SCM)

Sea&ghts

ANALYZING QUALITY RISKS

The Sealights Chrome Extension is also used to present UCCs
inline via the Quality Risks reported in the Sealights Dashboard as
shown in Figure 2: Quality Risks.

In addition to providing the name of the contributor and any
commit message you can also identify the file name, line number
and method where the quality risk has been identified.

Clicking on the logo that represents the SCM will take you
directly to the line of code in your repository as shown in Figure
8: Analyzing Quality Risks (Navigating to your SCM) and Figure 9:
Analyzing Quality Risks (SCM Integration).

Test Optimization (REM Cockplt a a °
DURATION TESTS FAILED SHIPPED r_rﬂi-T\Lrll-E %t;ht-ll;‘\r“- "‘n".’.'."KI:Y
1.0643 [ref; 1.0.630] Entire Bulld « i e A Sy
0:00:29 1412 4] 62 87% 88% 2
Entire Build + Coverage Type: Methad O, Sea
QUALITY RISKS . HIGH PRIORITY CONTREBUTORS
2 * Open in github

1-10f1 |4

ANALYZING COVERAGE DATA PROCESS OVERVIEW

In this phase of the overall process, we have reviewed the best
practice for using the Sealights functionality to establish a
consistent methodology to perform a deep analysis of code
coverage and potential quality risks. To summarise:

1. Assess the impact of Quality Risks highlighted by Sealightsin a
code review.

2. ldentify the contributors who can help build coverage for the
Quality Risks.

3. Have the software development and quality engineering teams
collaborate in defining a plan to address all Quality Risks.

Best Practices for Implementing Software Quality Intelligence with Sealights 17

Step 2 - Analyze Coverage Data Sea&ghts

JALITY AT T New/Madified Code Cwverall Code New/Modified & Untested Code b s
@ st g mremsuges ~ D0% Covenge 73% Coverage @ 3 Eo 10402 F
) Conversation 3 o Commits 1 FL checks 3 [Files changed & +17 14 nEEE
Changes from all commits ~ File filter ~ Conversations » Jumpto~ 8+ 05 files viewed ()
v Bim .gitignore [[Viewed =+»
- o @ -13,3 +13,4 &0
13 13

14 14 /package-lock. json
15 15 Feonfig. json
16+ ftypes/+xf+.%

GalHalupSealights 23 hours ago @

why is this required?

. Reply...

+ & mWEN lib/coordination/contracts.ts (& [Viewed ==+

e fee B8 -1,9 +1,9 ¢

1 1 import {Ilogger} from *../logoer/contracts";
2 2
3 3 export interface ICoordimaticnService {
4 - acquirelockikey: string, logger: Ilogger): Promise<ICoordinationServicelocks
5 - waitUntilleckfcquired{key: string, logger: IlLogger, waitBetweenAcquireAttempts?: number): Promise<ICoordinationServicelock=;
6 = lockAndRun<T=(lockMame: string, logger: ILogger, action: () => Promise<T>): Promise<Ts;
4 & acquirelock(key: string, logger: ILogger, lockTimeout?: number): Promise<ICoordinationServicelocks=
- N waitUntillockAcguired{key: string, logger: ILogger, waitBetweenAcquireAttempts?: number, lockTimeout?: number): Promise<ICoordinationServicelocks=;
LS lockAndAun<T=(lockName: string, logger: ILogger, action: () == Promise<T=, lockTimeout?: number): Promise<T=;
7 7 }
8]
]] export interface ICoordinationServicelock {
¥
~ I & mmmm lib/coordination/ne-coordination-service.ts (O 9 [viewed -+
fia @@ -6,15 +6,15 @@ import {ICoordinatlionService, ICoordinationServicelock} from “,/contracts";
(-] 13 *f
T T export class NoCoordinationService implements ICeordinationService {
8 8 public leck = new MoCoordinationServicelock();
9 - public acquirelock{key: string, logger: ILogger} {
. 9 + public acquireLock{key: string, logger: ILogger, lockTimeout?: mumber) {
18 18 return Promise. resolve{this. lock);
11 11 ¥
12 12
13 - public waltbntillockAcquired{key: string, logger: ILogger, waltBetweenAcquireAttempts?: nusber) {
. 13 + public waitbntillockAcquired{key: string, logger: ILogger, waitBetweenAcquireAttempts?: number, lockTimeout?: number) {
14 14 return Promise.resolve{this.lock);
15 15 b
16 16
- - public lockAndRun<T={lockName: string, logger: ILogger, action: ()} == Promise<T=): Promise<T=> {
. 17 o+ public lockAndRun<T={lockName: string, logger: ILogger, actien: ()} == Promise<T=, lockTimeout?: nusber}: Promise<T> {
18 18 return action(};
19 19 i

i

Figure 9: Analyzing Quality
Risks (SCM Integration)

Best Practices for Implementing Software Quality Intelligence with SeaLights

18

Sea&ghts

STEP 3 - DEFINE
QUALITY POLICIES

The third step, or “Line of Defence”, in implementing a
Software Quality Intelligence process involves defining
Quality Policies based on risk levels and automatic
gates to accelerate processes.

PERSONAS AND CADENCE Typically the best practices that will be developed and
implemented in this step would be led by, but not be limited to,
the Quality Engineering organization based on feedback from the
product owners on the business criticality/impact of the code.
Quality Gates should then be regularly reviewed to determine if
the criteria can be increased to drive a quality culture based upon
continuous improvement.

Best Practices for Implementing Software Quality Intelligence with Sealights 19

Step 3 - Define Quality Palicies Seaﬁghm

FUNCTIONAL OVERVIEW
Before we review the process let's look at the Sealights
functionality that enables this.

Ml Quali&yem| sealights-sl-cloud-release

Quality Gate fails if one or more of these conditions are met

Rula Tast Stages

+ New/Modified Code Coverage Combined Acrass Stages
& Overall Gode Coverage Gaembined Across Stages

& Failed Tests Comhined Acrass Stages

Figure 10: Defining
Quality Gate Criteria

The Sealights Quality Gate defines thresholds that determine if
a build is meeting your quality criteria and can be set differently
for each application/service, or applied consistently across all
applications/services.

There are three criteria that control the Quality Gate status:

> New/Modified Code Coverage

> Overall Code Coverage

> Failed Tests

Best Practices for Implementing Software Quality Intelligence with Sealights 20

Step 3 - Define Quality Policies

Sea&ghts

Quality Gate status can be Passed (all the quality gates have met
all the criteria) or Failed (one, or more, of the quality gates did not
meet the criteria). Sealights provides the ability to generate Slack
and Email notifications on builds reported to the Dashboard. Quality
Gate status is a trigger to generate notifications.

BEST PRACTICES FOR DEFINING QUALITY GATE CRITERIA -
COVERAGE GOALS

Quality Gates are part of the software development process that
use specific, measurable, and achievable criteria for each build of
each individual component. Enabling Quality Gates enforces the
improvement of each development stage, making the process

of elevating quality more transparent and traceable whilst
maintaining, and increasing, velocity by providing data that enables
real-time decision making and ultimately automates the promotion
of code.

Focusing on getting 100% code coverage can on its own create
technical debt from low value tests and additional maintenance
effort. You should also pay attention to tests that have been copies
and pasted just to seemingly increase coverage to hit the target
coverage goal.

However, a low code coverage number and the resulting high
number of quality risks increases the likelihood of pushing bad code
into production. Seal.ights focuses on highlighting not what code is
covered, but what's not covered.

There is not one ideal coverage goal that you can universally apply
to all applications/services. The level of coverage should be a
function of:

> Business impact/criticality of the code
> How often the code will be modified
> Lifespan of the code

> Code complexity

Best Practices for Implementing Software Quality Intelligence with Sealights 21

Step 3 - Define Quality Policies

Sea&ghts

Ultimately, the level of code coverage is a business decision made
by the product owners with the domain knowledge. However,

any mandated target goal should be supported by infrastructure
investments to ensure that the correct tooling is made available to
develop, test and govern the process. The most effective way of
setting a target goal is typically to have the team select the value
that makes the sense for their business need.

As the level of code coverage increases the gains in quality diminish
so the focus should be on significant returns, for example getting
from 30% to 70% and maintaining that level of coverage. Applying
the processes outlined in this document, combined with increased
visibility, will automatically raise code coverage levels well beyond
target goals. For example, collaborating on UCCs that Sealights has
identified, that take place during the code review process, are more
valuable than simply focusing on a coverage goal figure. Embedding
code coverage into your code review process will make code
reviews faster, easier, and prioritised based on Quality Risk.

Best Practices for Implementing Software Quality Intelligence with SealLights 22

Sea&ghts

STEP 4 - PERFORM
A RETROSPECTIVE
ANALYSIS

In the “Report” phase of implementing a Software
Quality Intelligence process we provide the ability to
produce sprint retrospectives to aid in the planning
process for subsequent sprints with Test Gap
Analytics (TGA) Reports.

PERSONAS AND CADENCE Retrospective analysis is a collaborative exercise led by the
Manager of the sprint. Regular test gap analysis can help
managers improve test planning, keep the primary focus on
testing new code, and also ensure good test coverage. Sealights
Test Gap Analytics gives clear visibility into the quality risks that

accumulate over time.

Best Practices for Implementing Software Quality Intelligence with Sealights 23

Step 4 - Perform a Retrospective Analysis Seal;ghts

FUNCTIONAL OVERVIEW
Before we review the process let's look at the Sealights
functionality that enables this.

Sea,ﬂgm Dashboard Quality Anslytics (WEWI} TGAReport TastOptimization (WM} Coekpit (7] a °
4P FEAAMCH
PCF Dema, sealights-python-agent, sealights-python-agent, sealights-slcloud-agenis-service, sealights-gl-closd Iytics-repart-aervioe, eealighte-el-cloud-apl-gateway, sealighte-el-cloud-auth-searvice, sealights-at-cleud-build i, sealigh
APPS GROUP UNTESTED METHODS RAMGE GENERATED ON
Medifind —of. Dearadl

gealightz-shcloud-ui
orgln/master

1610 (35%) 6036 (95%) s hihee Feb 6, 2022, 5:02 AM

sealights-stcloud-releass S Jan 31, 2022 - Fab 6, 2022
origin/master 75 mchied method, Ena) 128{128) 11.11884- 1111944

69 of them (8%) were not tested,

Feb 7, 2022, 5:02 AM

|4
Q

sealights-stcloud-tests-management-sernvic Dec 20, 2021 - Jan 16, 2022

angin/mastar 60 (8%) 12{11%) 1.0.297 -1.0.316 Jan 17,2022, 5:02 AN

sealights-sheloud-release Jan 31, 2022 - Feb 6, 2022

i Backend 42 (14%) 798 (10%) e b B R Feb 7, 2022, 5:02 AM
lights-st-cloud jan-d ! Jan 9,022 « Feb 5, 2022 ;
ongl’r‘l’fmaaler Backend 32 (46%) 35 (38%) 1.0.60-1.0.60 Feb 6, 2022, 5:02 AM
senlights-s+cloud-builc-service De< 19,2021 - Jan 15, 2022 7
arigin/master Backend 28 (5%) 70 (8%) ey ol Jan 16,2022, 503 AM

Figure 11: Sealights
TGA Report

Test Gap Analytics identifies all quality risks for a specific time
period, and includes the following:

> all builds
> all test stages

> all code changes

SPRINT RETROSPECTIVES AND PLANNING WITH TEST GAP
ANALYTICS (TGA) REPORTS

Before you start using TGA Reports you should set the scope of the
code that matters to you. You do this by removing data that you
determine will be irrelevant, steps to do this can be found in the
product documentation on “Settings Area”.

Best Practices for Implementing Software Quality Intelligence with Sealights 24

Step 4 - Perform a Retrospective Analysis

Sea&ghts

Having defined the data in scope, you can then apply three use cases:

> Definition of Done for sprint quality - Validate new/modified code
has been tested

> Monthly Quality Report - Analyze the quality performance of
your applications/teams

> Test Development - Identify high-risk code areas and create
testing plan

We recommend that the Monthly Quality Report should be used as
the Quality KPI going forward.

Use these settings to define the Test Gaps Analytics reports -
setting the reports here will result in reports that will be available in
the Test Gaps Analytics screen.

ADDING AN APPLICATION TO THE TEST GAP ANALYTICS
1. Select the relevant application

2. Select the relevant branch

3. Select the start date (a future date, e.g. next Sprint start date or
the 1st of the next Month)

4. Select the reporting period in weeks (Scheduled refresh)

5. Click “Save”

In the example shown in Figure 11: Sealights TGA Report Detailed Test
Gap Analysis you can see how we can look back at a specific date
range to get a view of what gaps remain that may impact quality, and
the specific details of which methods may introduce defects.

If you are using the Sealights Production Listener you will
have an additional two columns representing Methods Used in
Production and Modified and Used in Production.

Best Practices for Implementing Software Quality Intelligence with Sealights 25

Step 4 - Perform a Retrospective Analysis Sea&ghts

Drilling down, by selecting the application/service, and sorting/
filtering enables you to quickly access the details of specific areas of
your code which will help you identify the areas of code to focus on.

a. Use the “Search” bar to focus on important classes/files (Logic,
Calculation, etc..)

b. Use the “Test Stage” drop-down button to review the untested
files/methods per specific test stage. Focus on areas which are
sensitive to Integration Tests:

i. Priority O - Untested by all test stages

ii. Priority 1- Untested by a specific test stage, i.e. Integration/
Automation/Regression Tests (the rationale of this is to
exclude the unit tests)

c. For legacy applications (low code change volume), focus on
the modified areas

SE‘angﬁL! bashboard Quality Analytics (W) TGAReport TestOptimization (WEW) Cockpit (] a °
Jah " . WIDIFIED CVERALL
¢ il Branch: Gioup:mo-group | Range: Deo ¥, 2021 Dec. i
Test Gaps 50 863 (24%) 1753 (18%)
"""" €, Bomch
Entire Build
Manual Tests
b4
Unit Tests
F UNTESTED METHODE CONTRIBUTORS
— % Mot Ol
5 Sanity lntegration /it gep {build-mapping geparserts 9 (20%) 2(20%) ° ° ° o @ °
. ‘s.lfi,__, Line 392 fes Yes
H (Anonymous) Line 398 Yes Yes
— getDeletedFilesMap Line 665 Yes Yas
i (Anonymeous) Line 672 fes Yeg
H (Ancnymous) Line 682 Yes Ye3 E
L1 (hnonymous) Ling 693 Yes Yes
H (Anonymeus) Line £94 Yas Yes
b=l (ARCnYMoUS) Line 695 Yoz Yoz
L (Anonymous) Line 696 Yes Yos
sealights-shclowd-builddiff-queve-parseslibyinfra/lagaing /restify-loggerts G(100%) 6 (100%)
sealights-shclowd-builddiff-quevs-paraer/libyinfra/ caching redis-cache tz 2(30%) 3(30%)

Figure 12: SealLights TGA Report
Detailed Test Gap Analysis

Best Practices for Implementing Software Quality Intelligence with Sealights 26

Step 4 - Perform a Retrospective Analysis

Sea&ghts

If you have the Sealights Chrome Extension installed, you can
access more detail in your SCM.

1. Click on the SCM link for the given file you would want to explore

further

2. You will be linked to your code repository and can access the

specified file space within your SCM.

a. You can see the TGA insights in line with your code with the
Sealights “Code Viewer”, part of Sealights Chrome Extension

b. SCM’s supported by Sealights Code Viewer- Github,
BitBucket, Gitlab, TFS/TFVC

. Use the test stage drop-down button to focus on a specific test

stage

a. e.g. In order to focus on areas which are not tested by Manual
Tests > pick the “Manual Tests” value from the drop-down

. Review the file and Quality Risks and decide which of these

should be addressed within the current/upcoming Sprint

. Control and Feedback Loop

a. Reiterate the process in future sprints to ensure that the gaps
have been actually closed by your Dev/QA team and identify if
new test gaps have been created

b. Create a monthly report which includes the relevant sprint

Best Practices for Implementing Software Quality Intelligence with SealLights 27

Sea&ghts

STEP 5 — ASSESS
OVERALL QUALITY
TRENDS

In the “Trend Reporting” phase of
implementing a Software Quality Intelligence
process we take a high level look at how
quality risks associated with application code
have developed over time with the SealLights
Quality Analytics Coverage Trend Reports.

PERSONAS AND CADENCE Quality Analytics Coverage Trends Reports are focused on
providing senior management business level visibility into how
quality is developing over time and the impact of different
testing strategies. We recommend that this should be reviewed
monthly at a minimum.

Best Practices for Implementing Software Quality Intelligence with Sealights 28

Step 5 - Assess Overall Quality Trends

Sea[l\ghts

FUNCTIONAL OVERVIEW
Before we review the process let's look at the Sealights

functionality that enables this.

Dashboard Quality Analyties [NER)

Seaﬁgh.tq

TGA Rapart

¢ BADK TD REPORTS LIST

Tust Optirnization

Coekpit

= Filter *
sealights-sl-cloud-release
& Coverage trend report | sealights-sl-cloud-release orgin/master | Awgust 7, 2027 - February 8, 2022 Crartciemertz e) { 8
DATE RANGE
Last & montha ~ Madified Caverage
The chart inglutes ooy the coverage of a new o marfied @
ApE
sealghisshcioud el s \
BRANEH
origin/mastes v : R — - L N B L N
v & p ¥ 7 3 &7 = O S
& g P & 3 : . 4 5 & &
TEST STAGES (Max} !"I; e,"ﬁ <.’-°f \,-“"d = .\"J p: & '. & ‘“@j ’ .*'-‘p’ P ‘e*f .'l‘;f S @e-‘q”
& & o & o o & A S o
Neghtly &F1 Tests - &
Unit Testa ot
B Component Teaiz - ,%‘
Overall Coverage 3
s ! @ L
Sanity [negrstion 3 The cverall caverage chart nchides the coverage af the antre pade
Manual Tests >
e —
——
UaT - &
BuULDE
3 — 3 B N : B BN
® AllBuilds g F—a——F g & § E3 : ¥ = -§" —E
o 5) 5 & s ; a a 5 P :
Inintevals of L sss _I‘_a“ __.;"‘ & o & C“F o Y & oF # ’_,'_@” v\:?‘s w.e@
d A F X F & - - 3
EA G A S A A R A A

(2 Refarence Buidda O

Figure 13: Sealights Quality
Analytics - Coverage Trend Report

Best Practices for Implementing Software Qu

You can analyze what affects your quality the most, what is the
impact of your different test stages, how your quality trend looks
like, where your quality pain points are and more.

The Coverage Trend Report is the first report available under
Quality Analytics. It displays application code coverage over time.

When you first enter the Quality Analytics page, you will see an
empty list of saved reports. Click on the + button at the right top
corner to create your first report.

ality Intelligence with Sealights 29

Step 5 - Assess Overall Quality Trends Sea&ghts

_S‘ga_ﬁ;hm Dashbosrd Quality Analytics (WBW) TGAReport TestOptimizstion (Wew)) Cocipit ﬂ o

Quality Analytics b Coverage Trend Report

Figure 14: Creating a Coverage
Trend Report

Once you create a report you have to click the save button, to add
it to your saved report list. That way you can return to this report
any time to track progress.

< BACK TO REPORTS LIST

sealights-sicloud-release
& Coverage trend report | sealights-sl-cloud-release orlgin/master | August 7, 2021 - February B, 2022 Charielerentse [< B

Figure 15: Saving a Coverage
Trend Report

The reports you create are private and only available for you. You can
use the copy button to share a specific report, as described below:
Generating A Report

Generating a report is as simple as selecting the app and branch
you are interested in.

You have different options to view the data:

Date Range

The popular options available are: Last month, Last 2 months, Last

3 months, Last 6 months, Last year.

If none of the above is what you need, you can always select a
custom date range. We recommend a minimum of 4 weeks.

Best Practices for Implementing Software Quality Intelligence with Sealights 30

Step 5 - Assess Overall Quality Trends

Sea&ghts

Test Stages

A list of all test stages reported for the selected app and branch
during the past year, ordered alphabetically. Each test stage has its
own color that is used in the charts.

You can select / deselect any of the test stages to focus on the
data you want to see in the charts.

Builds

There are two ways to analyze quality data overtime: either look at
all builds of the selected app/branch or only track builds marked as
reference builds (usually these are production/released builds).

> When looking at all builds, you can select in which intervals you
would like to aggregate the data. Options are: 1 week, 2 weeks, 3
weeks, 4 weeks, 1 month.

> When tracking only reference builds, you can select/deselect
reference builds from a list (most likely you would like to include
all reference builds).

Understanding The Data
The report includes two charts: Modified Coverage and Overall
Coverage.

Both charts display an aggregated coverage on top of the specific
test stages coverage and include:

> Y-axis: Coverage % (0-100%)

> X-axis: Time, according to the filter selection and intervals

Build Intervals

When selecting any of the interval options (1 week, 2 weeks, 3
weeks, 4 weeks, or 1 month) any point in the X-axis and in the
chart line represents an interval. Interval X takes all code changes
from the last build in interval X-1, and takes all coverage from all
related test stages that were reported in all builds within interval X.
(e.g. Interval of 1 month: coverage in July means all code changes
since last build on June and their coverage from all test stages
executions reported on builds within July).

Best Practices for Implementing Software Quality Intelligence with Sealights 31

Step 5 - Assess Overall Quality Trends

Modified Coverage

Seal;ghts

Reference Builds

When selecting the reference build option any point in the X-axis
and in the chart line represents a single reference build. Reference
build X takes all code changes from reference build X-1, and takes
only the coverage from the test stages that were reported to
reference build X (similar to the calculation in the Dashboard).

Modified Coverage Chart

Modified coverage is the coverage of your code changes. Why is it
important to track it? Your quality risks are code changes you haven't
tested. The higher the coverage, the lower the chances for escaping
defects. You want to see high coverage overtime, to reduce risks.
High modified coverage overtime is an indication for a good quality
culture. It means that any new or modified code is tested.

The modified coverage chart Includes only the coverage of a new or modified coda. @

AUNOW - ZRINOY PRINON - BIDEC

Figure 16: Coverage Trend Report
(Modified Coverage)

3/JAN - 17/JAN |

W Al test stages modified coverage g -"--.._
167 eutel 211 menads 89% 7
M Seiected stages modified coverage i
118 out of 130 madhods 85%
Nightly API Tests 45% |
5 out of 211 methods =
Unit Tests TE% “‘-EH
158 ot of 209 mathods - E—
: —t E
B component Tests 2B%
S5 ot of T11 mathods N=TSIAN T7FJAN - 311LIAN FNAN - TIFEER
Sanity Integration 3%

B3 out of T10 mathods

Best Practices for Implementing Software Quality Intelligence with SeaLights 32

Step 5 - Assess Overall Quality Trends Seaaghts

Overall Coverage Chart

Overall coverage is the coverage of your entire code. You should
track the overall coverage to make sure that overtime your trend is
positive, mainly by covering new and modified code. You might see
drops in cases you had major code changes with no coverage.

The overall coverape chart includes the caverage of the entire code, ©

el 3/JAN - 17/JAN

B All test stages overali coverage
E217 aut of 10004 methada
“TiA OM for part of the test ssages

T ightly AR Teste
4427 oun of 10004 methods.

I UnitTests

5923 oul of 1998 mathods
Il component Tests 3% 41N TN - 12N CEIAN - TIFER
T ot o 10004 ety

Sanity Integration
4168 out of 9127 methods (T14 ()

Figure 17: Coverage Trend Report
(Overall Coverage)

Best Practices for Implementing Software Quality Intelligence with Sealights 33

Step 5 - Assess Overall Quality Trends Seal;ghts

Group Coverage Chart

Group coverage is the coverage for 2 or more applications (for a
specific branch per application) providing a view of their individual
coverage trend and an aggregated coverage trend (modified and
overall coverage).

This report enables managers to track the coverage trend of an
entire product, entire team, line of business, or a professional guild
(for example Front-End, Java, Back-End, etc.).

Smflghh Dashboard Quality Analyics (T} TGARepart Tes Optimization (WH) Cackpit (7] * e
¢ BACKTO REPORTE LBT
Group coverage trend report
Undtitied Repart | August 8, 2027 - Fabruary 7, 2022 meems @) < B
Modified Goverage Apps (%)
s uarage shart e oty pvesrage at & sosear mostd snds, T gttt
h—
Shbiaaa ey soalightss cloud testvents @
e ——— QU paTser
sealights-s-chou testnctprs: &
queuaparser
sealights-shcoud bests- =
management-serdoe
seslighls-ghedoud tesis-gtate £
1 E’ g- E i In‘fc?ce:-sl:rvice
o x: nin [L =
Dreerall Cavarage E
the Sl it (=]
— January 2012 R
W ovessi Coverage 2
Sttt S 85%
B b ol el v queun-pirter. B4R
o G s
L5
[
g i H B
£ [T O
PR —
" o v i b

Figure 18: Coverage Trend
Report (Group Coverage)

Sharing The Report
After generating a report you can use the copy button to copy the
report URL to your clipboard to share the report with others.

Best Practices for Implementing Software Quality Intelligence with SeaLights 34

Sea&ghts

STEP 6 = OPTIMIZING
EFFICIENCY/
VELOCITY

In the “Optimization” phase of implementing
a Software Quality Intelligence process we
use Sealights’s capability to provide visibility
into actual test execution time and test
coverage requirements to reduce test cycles
and improve test effectiveness.

PERSONAS AND CADENCE This step benefits all teams participating in the Software
Development Lifecycle:

> Managers can schedule more test cycles by eliminating
unnecessary tests

> Manual testers get test execution recommendations to
increase their efficiency

> Developers get more code development iterations as testing
cycle times are decreased

Best Practices for Implementing Software Quality Intelligence with Sealights 35

Step 6 - Optimizing Efficiency/Velocity

Smﬁgm Cnsthoond

= Fiter

DATE RANGE

Lat 14 days

s

soabghte-of-choud reas

TEST STARE

B Highty API Teutn -
Saniy Eegration
Wit Teala
Comganent Teats

Marwal Tests

Qualty Anabytics (8] TEARepart

FUNCTIONAL OVERVIEW

Seaﬁghts

Before we review the process let's look at the Sealights

functionality that enables this.

TestOpimization () Cockpit

Test Optimization » Testing Details
sealightealcloudeiease Nighlly AP Tesia

» Tating Cvrium

» Bulby

(AR

FobT, VL 995 P

EREET]
Foh?, NE 48 Fd

EREET

P, I 749 P

Figure 19: Test Optimization

(Testing Details)

Sratiases

Eserabon Suls

Jun 25,2022 - Feb B, 2022
Statintic oF te achun test mecuion v (e aslected date range

9 3,186 1

s PasED resTs PRLES TEETS

Pamiber O Tests (Last 14 days)

TOTAL TESTS MOOCID

438 (3w

T TeETs
K

Tt o s [l 50 b}

Rus Time Of Tanuts (Livat 14 days)

TETAL FINE SAMID

17 hoes

TOTAL TINE
73h

Testn per ok ot 20 bl

od0
SRR - ©)

168

s e

i TR oty
49 5%

Wi TESTR
78

1.25h ow

AL THE

B25h

Test Optimization helps organizations shorten their automated
and manual testing activities by reducing 50% to 90% of their

test execution time. It is a Smart Test Execution Engine that cuts
the testing cycle time by 50% to 90%. It can be tedious and time-
consuming to run a full set of unit, functional, and regression tests
each time a developer commits new code to the repository.

Sealights Test Impact Analysis (TIA) eliminates much of this
repetitive effort, since it can identify and execute the smallest
subset of mandatory tests—without compromising quality.

Test Impact Analysis provides support for :

> all types of tests

> all of your apps and programming languages

Best Practices for Implementing Software Quality Intelligence with SeaLights

36

Step 6 - Optimizing Efficiency/Velocity

Sea&ghts

SUPPORT FOR ALL TYPES OF TESTS

Through intelligent automation, Sealights Test Impact Analysis

will optimize and expedite the execution of almost any test type.
Beside unit tests, you can apply TIA to your Continuous Integration
(CI) implementation to automate functional, component, regression,
and end-to-end tests. Sealights TIA also accommodates manual
testing and Ul testing—including those using playback functionality
(such as Selenium).

SUPPORT FOR ALL YOUR APPLICATIONS AND LANGUAGES
Besides integrating with your Cl environment, SealLights TIA
supports various application architectures and programming
languages. From monolithic applications to distributed systems,
from HTTP methods to microservices, Sealights TIA can
accommodate most any architecture. There's no need to adapt
your development practices to exploit TIA, since it supports Java,
Node.js, JavaScript, and .NET/C#.

THE SEALIGHTS TEST IMPACT ANALYSIS PROCESS

TIA Outcome
Sealights Test Impact Analysis produces a list of test
recommendations pertaining to these types of tests:

> Impacted tests - Tests that correspond to recent code changes.
> Failed Tests - Tests that did not pass in the previous run.

> Pinned/Flagged Test - Tests that are marked as important to run
in every test cycle.

> New Tests - Tests that have never been run.

Best Practices for Implementing Software Quality Intelligence with Sealights 37

Step 6 - Optimizing Efficiency/Velocity

CODE Changed?
(methods)

M1
M2
M3
M4
M5
M6
M7
M8
M9
M10

Mx YES

Figure 20: How Test Optimization
(Test Impact Analysis) Works

Seaﬁghts

How does Test Impact Analysis (TIA) work?

These are the general steps in Test Impact Analysis:

1.

2.

You: Integrate Sealights with your ClI.

You: Install agents, then direct Sealights to scan the latest build
and the tests that are already running.

. Sealights: Correlate each test with the methods that relate to it.

. Sealights: Compare any new build content with the content with

which the current test stage was last executed.

. Sealights: Identify any tests that are impacted by modified

content and recommend tests.

. You: Direct Sealights to execute only the recommended tests,

excluding those that are extraneous.

You: Execute “Full Run” tests on a defined schedule (for example,
the first of day/week/month, or N builds) to ensure no tests are
ever overlooked.

8. Sealights: Analyze and improve using machine-learning
algorithms.

CODE CODE
(full regression) (methods)
T1 M1

T2 M2

T3 M3

T4 M4

TS5 / M5
T6 / M6
- / =

T8 M8
T9 T9
T10 M10
™ Mx

Best Practices for Implementing Software Quality Intelligence with SeaLights 38

Step 6 - Optimizing Efficiency/Velocity

Sealighis

Dashhoard Quality Analytics (M) TGA Report

= FUTER

Sea&ghts

PRODUCT WALKTHROUGH
Follow these steps to configure TIA:

1. Click Test Optimization on the top right end of the screen.

2. The default configuration is that automatic test selection is "Off"
(The TIA analysis will provide a list of test recommendations
without executing the recommended test list).

3. Choose the application name(s) and the relevant branch(es).
4. Choose the date range of the TIA.

5. Select the test stage(s) to be analyzed

30

Test Optimization (ow) Cockpit

Coverage Type: Method 0 Seawcn

ABR / BRANCH BUILD OVERALL EOVERAGE REFERENCE BUILD MOBIFIED COVERSGE QUALITY RISKS CUALITY GATE
I-cloud-rek 1111960 86% 11.11920 i
4 5 . Falled
i maater P o g Wi 65% 28 al
.
sealights-sk-cloud-build-service 1.0.643 87% 10638 88% 2 B

onigin/master

Figure 21: Accessing Test
Optimization

Best Practices for Implementing Software Quality Intelligence with Sealights

poddng

UNDERSTANDING THE DATA
The high-level report includes 4 main levels of information:

1. Summary view — lists all of your applications, sorted by the
total time saved (for each app and each test stage).

2. Application details — lists the app name, branch name, analysis
period, and the relevant test stage.

39

Step 6 - Optimizing Efficiency/Velocity

Seaﬁg}lts Dashboard

= Filter

DATE RANGE

Last 14 doys

APFE

24 Apps

TEST STAGES (mw

W nightly AP Tests

Samnity Integration

Unit Tests

Compaonent Tests

Manual Tests

3. Summary — includes aggregate information:

Sea[a\ghts

a. Average run-time and Average # of tests (with or without

tests selection)

b. Average time saved and Average # of tests reduced (with or

without tests selection)

c. Estimated total time saved for the analysis period

Ouslity Analytics (B} TGAReport Test Optimization (W) Cockpit

Test Optimization
TAON APR TOTAL TEST EXECUTION TIME (Last 14 deys)
- sealights-sl-cloud-release

SL.OnPremise Agents. Java

sealights-si-cloud-infra2 w
sealights-sk-cloud-pte-processor v
sealights-sl-cloud build-service '

sealights-si-cloud-tests-management-service

sealights-sl-cloud-test-coverage-queue-parser .

sealights-sl-cloud-apt-gateway

sealights-sl-cloud-notifications-service '

sealights-sh-cloud-buillddIf-guele-parses '

sealights-sl-cloud-failed-tests-queue-parser

sealights-sl-cloud-agents-service .

sealights-sl-cloud-tests-state-tracker-service '

sealights-sl-cloud-auth-service

sealights-sl-cloud-analytics-report-service T

sealights-si-cloud-ticket-management-service

si-cloud: i GLELE-parser

sealights-sh-cloud-scheduler-gueue-parser

sealights-si-cloud-production-data-service

lights-si-cloud- te-queve-parser

Figure 22: Test Optimization

(High-level Report)

Best Practices for Implementing Software Quality Intelligence with SeaLights

1=200f24

2]

104 h {104 h)
2Z2mi25m)
T4mi=1m)
3m(1.25m)
7.5m (3.25m)
375m
1.78m(<1s)
1.5m
1.5mis1s)
1.25mi<1m)
<im(<1m)
<1m<1m)
«1mi=1s)}
<1m
«<Tmi<1s)
<Tm (D)
=1m(0)
=1s{0)
<1s(0)
«ls

i< <

20

HEW MANUAL TEST ‘You can potentially save 2% of your testing time! Cancel Smulaton

40

Step 6 - Optimizing Efficiency/Velocity

Sﬁﬂﬁgh‘s Dashbaard
= Filter
DATE RANGE
Last 14 days ~
ARPS
24 Apps v
TEST STAGES (-
M Nightly APt Tests v

Sanity Integraticn Ed

Unit Tests o

Componernt Tests o

Manual Tasts +

Quality Analytice { N}

Seal;ghts

4. Test Execution details - including per-build information:

a. Build number and build date

b. Recommended tests that should be run

c. Estimate of the run time for each test

TGA Report

Test Optimization

TiA 0N

nFE

sealights-skcloud-release

SL.OnPramise_Agents. Java

sealights-sl-cloud-infra?

sealights-sh-cloud-pte-processol

zealights-si-cloud-build-service

sealights-sl-cloud-tests-manage

sealights-si-cloud-test-coverage

Figure 23: Test Optimization (Test
Execution Details)

Test Optimization (i

Cockpit

020

| NEW MANUAL TEST ‘You can potentially save 22% of your testing timal Canae! Simustion

Total Test Execution Time (Last 14 days)
sealights-slcloud-release

104 h (104 h)

TEST STAGE BUILDE

® Nightly API Tests
® Sanity Integration &

Manual Tests ¥ 4

Test Recommendations Report

VG TESTS AVG. TIME TOTAL BAYING

325 B.25h 11 b {fvg. 1:25h)
64 am 7 h(dvg. 13 m)
210 <1 m {0

This report presents a list of the impacted tests for each build.

NOTE: This information is also available through the SeaLights API.

USING THE DATA

Identifying Optimization Opportunities

While the TIA page shows the applications in two separate lists,

separated by which application has test stages with TIA on, the entire

application list is always shown, with filters on the left side of the page.

The applications are marked with a blue circle (TIA fully on),

gray circle (TIA off) or partial circle (some of the test stages are

with TIA on). Use the status to identify which applications have

some optimization applied to them (which you should still review

regularly) and which applications are candidates for optimization.

Best Practices for Implementing Software Quality Intelligence with SeaLights

41

Step 6 - Optimizing Efficiency/Velocity

Sen’:lfm Dasheoan
= A
BATE BeNGE
Last 18 oy w
s

S Sasiry et tics
w Ut Ter
ot Tesss

e T st

Gudny abicn (B ToARepen Tem Cpimbmics (B Gecepn

Test Uptimization * Testing Details

walgptialeld akias | Mghlly AP Tl | Jan 5, 2099 - Feh §, M97

ot i this huaie

+ Pawig Orovie Pemsuind Tarts
el e TRE S METHOD
T 29
R e e
Fan 7, T3 N
@ .
o
[ERFTT sagnsy
P e el X
Py e)
1T R
P72 T ! swilipialchadn
g
-
Bt Pl "
s (2

Pl T 115

Figure 24: Test Optimization (Test

Recommendations)

ey
e T P e T
Wity nrip e it

B b m

Bbidaainz brnsch e

Tl

b i el vt

Wi e e e 1S B T
[—

WATR AT DN st a5 18

Nbitharisce s 5

Bunahasred clem
BbcaaTra e Coaston sen e
RTINS COMEMTION Servioat 18
MO ks T

i eesage-q ueueimessages- sy manage 15
Nefatnubimcinpuamt e

[T

Seaﬁghts

ef?Q
Emm IIACIN‘)

U WAL TRET

Ao TEOT

FIsheRaiin (aeBoan ex1braal (2 MOOSSET BT TIRSEAGES
islragetn asibon D stk i s iz
Lok bty Vi Py TV swaanrs ey Bt o s chaiges

T O et Hier i ca by bt

. ¥ g

imwmnrpe A1 e

L i Aot
“Top s et Ve comshunnTs on Pegeon k.

e G_TVA fets Uy egrcint texd conSguratisn

T IR Leta Ay e oo Lter i o o

o T Lnata sy vy oLk mrks for s s E
2 Tik i Wiy UL T kgt Lo i oy 1 comigonnsn

et i pirrrigakind sdht (i with an sy it

LTI 518 ropee Toaommardasion of el bod

T bt Versy specel et e

“Top GRS LEA1s Verfy Qualy gares wih messod modad tode

o LTI ks Ynaty TR b dhagmscens s from agei

Top 3Rs tRsts VE Carntibasass il ef B Biskd MIBE Y V3 IeR

“Top URE tawte Yarfy D3 whan ro mestied sode

LTI Ll iy A et bl ol b it bl omesl

wih o g

ks " : 5

LTI iy A TR mocecient AL 407 TGS b4kt whian Fioraed TO0Y ISR an repories on e vy bk

o by C1.T1A Bty Wty dita chawecs oo petigns

oy iner S

sl buskd 5t
Uisern 80 permissions Usdam o spge wih smpty ey
Wiificatin e Vi fy st o e e gt ikt
T et sy T wih relsted frct

Uinatn wret prrrinaions Uscles e appe

LT e i e b

Execute Only Recommended Tests

You should direct Sealights to execute only the tests that are

recommended, excluding any tests that Sealights has excluded

because the tests do not cover code that is new or has been

modified, tests that have passed in the previous run, etc..

Regularly Execute “Full Run” Tests

However, you should find time to regularly run all tests to ensure

that no tests are ever overlooked.

Best Practices for Implementing Software Quality Intelligence with SeaLights

42

SUMMARY

Sea&ghts

In this guide we have shared some
recommendations for best practices for

using SealLights and the steps to provide a
foundation for supporting and accelerating our
customer’s quality strategies, specifically:

> Identify New/Modified Code in the background without
impacting existing development

> Guide the software development team to the best decisions

> Determine release readiness, identify and prevent untested
code changes making it to production

> Direct teams to where to develop and execute the minimal
number of tests

These best practices are gquite generic, and we recognize that
customers have specific requirements that will need these
best practices to be adapted. We welcome feedback from our
customers on their experiences and requirements so we can
improve Sealights's support for additional common use cases
out of the box, and evolve this document to include specific
customer experiences to share with other organizations with
similar challenges.

Best Practices for Implementing Software Quality Intelligence with SealLights

43

Sea&ghts

USEFUL LINKS

s
N

Sealights Home Page:
https://www.sealights.io/

White Papers and e-Books:
https://www.sealights.io/learn/

Webinars:
https://www.sealights.io/webinars/

Sealights Blog:
https://www.sealights.io/blog/

What's New at Seal.ights:
https://www.sealights.io/whats-new/

How-to Articles:
https://sealights.atlassian.net/wiki/spaces/SUP/pages/1376261/
How-to+articles

Learn About Sealights:
https://sealights.atlassian.net/wiki/spaces/SUP/
pages/802652190/Learn+about+Sealights

Best Practices for Implementing Software Quality Intelligence with SealLights

44

