
BEST PRACTICES FOR
IMPLEMENTING SOFTWARE
QUALITY INTELLIGENCE
WITH SEALIGHTS

TABLE OF CONTENTS

INTRODUCTION . 3

STEP 1 – IDENTIFY NEW/MODIFIED CODE . 5

STEP 2 – ANALYZE COVERAGE DATA . 11

STEP 3 – DEFINE QUALITY POLICIES . 18

STEP 4 – PERFORM A RETROSPECTIVE ANALYSIS 22

STEP 5 – ASSESS OVERALL QUALITY TRENDS 27

STEP 6 – OPTIMIZING EFFICIENCY/VELOCITY 34

SUMMARY . 42

USEFUL LINKS . 43

Best Practices for Implementing Software Quality Intelligence with SeaLights 2

Best Practices for Implementing Software Quality Intelligence with SeaLights 3

Whilst changes should always be regarded as positive,

often change can become the enemy of quality if

not executed and managed rigorously. That is why at

SeaLights we focus on providing you with the ability to

capture and prioritise changes in your SDLC, but at the

same time avoid the unnecessary time, effort, and cost

of managing things that are not impacted by changes.

There is a widely used business adage “If you can’t measure it, you

can’t improve it” which should only be applied sparingly to avoid

another business adage “analysis paralysis”. Fortunately, SeaLights

provides constant measurement metrics in real-time that can be

consumed as and when required.

In this section we will review the SeaLights best practices for how

to measure the impact of changes to your applications and improve

the quality of what is delivered. This assumes that you already

have completed the steps to integrate SeaLights with your CI (Build

Scanner) and testing frameworks (Test Listeners).

INTRODUCTION

Introduction

Best Practices for Implementing Software Quality Intelligence with SeaLights 4

We will break up the 6 steps that we recommend you follow to

minimize quality risks into the following logical phases, for specific

personas, aligned with a typical sprint cycle as shown above:

 › Identify New/Modified Code in the background without

impacting existing development

 › Guide the software development team to the best decisions

 › Determine release readiness, identify and prevent untested code

changes making it to production

 › Direct teams to where to develop and execute the minimal

number of tests

TYPICAL SPRINT CYCLE WITH SEALIGHTS

B
u

ild
 P

rom
otion / Release Pull R

eques
t

New / Modifi ed C
ode

Re
tro

sp
ective

SPRINT CYCLE

Manager analysis of Sprint

outcome (Code, Quality)

Test Gap Analysis

Quality Gates Pull Request Integration

Quality Trend Reports

Developer in IDE

 › Build is being promoted to

master /production

 › Functional / E2E Tests

 › Code Reviewer / Manager

review and approve merging

of the code

 › Unit Tests

Best Practices for Implementing Software Quality Intelligence with SeaLights 5

STEP 1 – IDENTIFY
NEW/MODIFIED CODE

Typically the best practices that will be developed and

implemented in this step would be led by, but not be limited

to, the Quality Engineering organization. Once established we

recommend that the scope of the scanned code is validated for

every new application and service, new code labels are created

to identify new/modified teams and functional areas. Reference

Builds should also be regularly updated as the lifecycle of the

application progresses.

PERSONAS AND CADENCE

The first step, or “Line of Defence”, in

implementing a Software Quality Intelligence

process involves putting in place a consistent

methodology that will enable you to capture code

coverage across all test stages (unit, component,

functional, integration, sanity, API, user

acceptance, manual, etc.) and start the process of

identifying quality risks.

Step 1 – Identify New/Modified Code

Best Practices for Implementing Software Quality Intelligence with SeaLights 6

FUNCTIONAL OVERVIEW

Before we review the process let’s look at the SeaLights functionality

that enables this, starting with the SeaLights Dashboard.

Collation of data from multiple sources across the software

development pipeline, such as code change, test stages, code

execution, CI tools, production data, historical build information,

and more populates the SeaLights Dashboard under the following

categories:

 › Overall Coverage

 › Modified Coverage

Figure 1: SeaLights Dashboard

Step 1 – Identify New/Modified Code

Best Practices for Implementing Software Quality Intelligence with SeaLights 7

Overall Coverage identifies the percentage of methods that have

been tested by one or more test stages using the simple formula =

number of tested methods/overall number of methods.

Modified Coverage identifies the percentage of new or modified

methods that have been tested by one or more test stages using

the simple formula = number of tested new or modified methods/

number of new or modified methods.

Example: If you had an application or service that contained a

total of 100 methods and 70 of those methods had been tested by

one or more test stages then the overall coverage would be 70%.

Example: If you modified 10 of the 100 methods, and if 8 of those

modified methods were tested by one or more test stages, then

the modified coverage would be 80%.

Step 1 – Identify New/Modified Code

Best Practices for Implementing Software Quality Intelligence with SeaLights 8

Figure 2: Quality Risks

New or modified methods are determined by comparing the latest

build with a Reference Build. By default, the Reference Build is the

build prior to the current build in each branch. It can, however, be

set (or changed) by the user by hovering over the build in the build

history that you wish to specify as the Reference Build and setting

it with the flag icon.

New or modified methods that have not been tested by any test

stage represent a Quality Risk.

Example: The 2 new or modified methods that were not tested

by any test stage in the example above would appear as 2 quality

risks in the SeaLights Dashboard.

Step 1 – Identify New/Modified Code

Best Practices for Implementing Software Quality Intelligence with SeaLights 9

Best practice for setting the Reference Build is dependent upon

where you are in the lifecycle of the application but here are some

recommendations:

 › The first build from the current sprint

 › The last build from the previous sprint

 › The last build promoted to the next branch (e.g. feature-branch

to develop to main)

 › The last build from the previous sprint

 › The last build pushed to Production

This is displayed in Figure 3: Defining the Reference Build below.

Important: The Reference

Build setting will only apply

after the next build.

Figure 3: Defining the

Reference Build

Step 1 – Identify New/Modified Code

Best Practices for Implementing Software Quality Intelligence with SeaLights 10

You also have the option to define Ignored Code to exclude code

that is either auto-generated, getters, setters, default constructors,

deprecated code, and other irrelevant code areas such as third-

party code. Ignored Code will be removed from the Quality Risk and

Coverage analysis processes.

Code Labels allow you to divide your code into areas of interest by

defining categories representing either teams (Development, QA,

etc), Functional Areas (Login, Reports, etc) or any division you’d like

to see within your codebase. Furthermore, under each category,

you can define labels that will represent the code area relevant to

that label. When using the SeaLights dashboard you can filter your

view according to these categories and labels defined here. You

can also define labels as “High Priority” so Quality Risks around that

label will be highlighted.

For applications that consist of multiple components or services,

you will report these components individually, before grouping

them as one application in an Integration Build, on which cross-

component tests will run against (see the example in Figure 1:

SeaLights Dashboard).

Important: The code labels

may be applied to the

entire application, Classes,

Folder, File paths, and

Files. However, we strongly

recommend that you DO NOT

apply code labels at the files

level as it will not include

new files that are added to

the Folder/Class.will only

apply after the next build.

Step 1 – Identify New/Modified Code

Best Practices for Implementing Software Quality Intelligence with SeaLights 11

IDENTIFY NEW / MODIFIED CODE PROCESS OVERVIEW

In this phase of the overall process, we have reviewed the best

practice for using the SeaLights functionality to establish a

consistent methodology to identify quality risks. To summarise:

1. Define the scope of the scanned code for the application,

ignoring the irrelevant code

2. For the code in scope, define code labels for teams, functional

areas, etc.

3. Set Reference Builds in line with where you are in your

application development lifecycle

4. Where appropriate, create an Integration Build

Having implemented this consistent methodology, you can now

use the data that has been gathered by SeaLights to effect

increased collaboration across your teams and make better

informed decisions based on the improved, centralized visibility of

where your quality risks are on your journey to build a strategy to

eradicate defects from your production applications.

Best Practices for Implementing Software Quality Intelligence with SeaLights 12

STEP 2 – ANALYZE
COVERAGE DATA

The second step, or “Line of Defence”,

in implementing a Software Quality

Intelligence process involves applying the

measurements gathered in the “Identify”

phase to drive improved quality across

all applications and services that are

being reported to SeaLights through the

following SeaLights features:

 › Using the Code Viewer to view coverage data

 › Analyzing Quality Risks

Code Reviewer functionality provided by the SeaLights Chrome

Extension is typically used by the code reviewer or managers to

review and comment on changes prior to approving the merge

of the pull request. The review should be a collaborative process

involving the software development and quality engineering teams

who will look at the UCCs identified by SeaLights and then decide

if the impact of the UCCs meet the repository’s contributing

guidelines and other quality standards.

PERSONAS AND CADENCE

Step 2 – Analyze Coverage Data

Best Practices for Implementing Software Quality Intelligence with SeaLights 13

FUNCTIONAL OVERVIEW

Before we review the process let’s look at the SeaLights

functionality that enables this.

USING THE CODE VIEWER

The SeaLights Chrome Extension presents Untested Code

Changes (UCCs) which may represent Quality Risks in an overlay

over Pull Request lists and individual Pull Requests.

 › The SeaLights Chrome Extension is supported on all popular

Source Control Management (SCM) platforms, for example

GitHub, GitLab, Bitbucket, TFS, VSTS.

Each Pull Request that SeaLights has UCC data on is annotated

with the number of UCCs in the Pull Request as displayed in Figure

4: Identifying Untested Code Changes with the SeaLights Chrome

Extension (Pull Request list) above.

Figure 4: Identifying Untested

Code Changes with the

SeaLights Chrome Extension

(Pull Request list)

Step 2 – Analyze Coverage Data

Best Practices for Implementing Software Quality Intelligence with SeaLights 14

A full list of changed files from all commits, up to and including

the latest commit, is displayed in the Files Changed tab for each

individual Pull Request as shown below.

Figure 5: Identifying Untested

Code Changes with the

SeaLights Chrome Extension

(Individual Pull Request)

Step 2 – Analyze Coverage Data

Best Practices for Implementing Software Quality Intelligence with SeaLights 15

The metrics reflect the selected test stage and the coverage type

which can be:

 › A single coverage type (method or branch)

 › All coverage types (if the repository provides metrics of multiple

coverage types)

Each line of code that is identified as containing an UCC will be

annotated by a red diamond as shown below.

CODE REVIEW AND APPROVAL BEST PRACTICE

Code Reviewer functionality provided by the SeaLights Chrome

Extension is typically used by the code reviewer or managers to

review and comment on changes prior to approving the merge

of the pull request. The review should be a collaborative process

involving the software development and quality engineering

teams who will look at the UCCs identified by SeaLights and then

decide if the impact of the UCCs meet the repository’s contributing

guidelines and other quality standards.

To decide whether to approve a pull request you should review

the results within the Pull Request view in your SCM, as shown in

Figure 4: Identifying Untested Code Changes with the SeaLights

Chrome Extension (Pull Request list). This will highlight the number

of UCCs per Pull Request.

Selecting a specific Pull Request and selecting the Files Changed

tab will enable you to see the UCCs inline in your SCM, denoted

by a red diamond as shown in Figure 6: Untested Code Change

annotation. This is where the software development and quality

engineering teams collaborate to decide on whether the code is of

suitable quality to be merged.

Figure 6: Untested Code

Change annotation

Step 2 – Analyze Coverage Data

Best Practices for Implementing Software Quality Intelligence with SeaLights 16

Figure 7: Example of setting Pull

Request Review Status in GitHub

After a pull request is opened, anyone with read access can review

and comment on the changes it proposes. You can also suggest

specific changes to lines of code, which the author can apply

directly from the pull request.

Repository owners and collaborators can request a pull request review

from a specific person. Organization members can also request a pull

request review from a team with read access to the repository.

Reviews allow for discussion of proposed changes and help ensure

that the changes meet the repository’s contributing guidelines and

other quality standards. You can define which individuals or teams

own certain types or areas of code in a CODEOWNERS file. When a

pull request modifies code that has a defined owner, that individual

or team will automatically be requested as a reviewer.

A review has three possible statuses:

 › Comment: Submit general feedback without explicitly approving

the changes or requesting additional changes.

 › Approve: Submit feedback and approve merging the changes

proposed in the pull request.

 › Request changes: Submit feedback that must be addressed

before the pull request can be merged.

Step 2 – Analyze Coverage Data

Best Practices for Implementing Software Quality Intelligence with SeaLights 17

ANALYZING QUALITY RISKS

The SeaLights Chrome Extension is also used to present UCCs

inline via the Quality Risks reported in the SeaLights Dashboard as

shown in Figure 2: Quality Risks.

In addition to providing the name of the contributor and any

commit message you can also identify the file name, line number

and method where the quality risk has been identified.

Clicking on the logo that represents the SCM will take you

directly to the line of code in your repository as shown in Figure

8: Analyzing Quality Risks (Navigating to your SCM) and Figure 9:

Analyzing Quality Risks (SCM Integration).

 Figure 8: Analyzing Quality

Risks (Navigating to your SCM)

ANALYZING COVERAGE DATA PROCESS OVERVIEW

In this phase of the overall process, we have reviewed the best

practice for using the SeaLights functionality to establish a

consistent methodology to perform a deep analysis of code

coverage and potential quality risks. To summarise:

1. Assess the impact of Quality Risks highlighted by SeaLights in a

code review.

2. Identify the contributors who can help build coverage for the

Quality Risks.

3. Have the software development and quality engineering teams

collaborate in defining a plan to address all Quality Risks.

Step 2 – Analyze Coverage Data

Best Practices for Implementing Software Quality Intelligence with SeaLights 18

Figure 9: Analyzing Quality

Risks (SCM Integration)

Best Practices for Implementing Software Quality Intelligence with SeaLights 19

STEP 3 – DEFINE
QUALITY POLICIES

The third step, or “Line of Defence”, in implementing a

Software Quality Intelligence process involves defining

Quality Policies based on risk levels and automatic

gates to accelerate processes.

Typically the best practices that will be developed and

implemented in this step would be led by, but not be limited to,

the Quality Engineering organization based on feedback from the

product owners on the business criticality/impact of the code.

Quality Gates should then be regularly reviewed to determine if

the criteria can be increased to drive a quality culture based upon

continuous improvement.

PERSONAS AND CADENCE

Step 3 – Define Quality Policies

Best Practices for Implementing Software Quality Intelligence with SeaLights 20

 Figure 10: Defining

Quality Gate Criteria

FUNCTIONAL OVERVIEW

Before we review the process let’s look at the SeaLights

functionality that enables this.

The SeaLights Quality Gate defines thresholds that determine if

a build is meeting your quality criteria and can be set differently

for each application/service, or applied consistently across all

applications/services.

There are three criteria that control the Quality Gate status:

 › New/Modified Code Coverage

 › Overall Code Coverage

 › Failed Tests

Step 3 – Define Quality Policies

Best Practices for Implementing Software Quality Intelligence with SeaLights 21

Quality Gate status can be Passed (all the quality gates have met

all the criteria) or Failed (one, or more, of the quality gates did not

meet the criteria). SeaLights provides the ability to generate Slack

and Email notifications on builds reported to the Dashboard. Quality

Gate status is a trigger to generate notifications.

BEST PRACTICES FOR DEFINING QUALITY GATE CRITERIA –

COVERAGE GOALS

Quality Gates are part of the software development process that

use specific, measurable, and achievable criteria for each build of

each individual component. Enabling Quality Gates enforces the

improvement of each development stage, making the process

of elevating quality more transparent and traceable whilst

maintaining, and increasing, velocity by providing data that enables

real-time decision making and ultimately automates the promotion

of code.

Focusing on getting 100% code coverage can on its own create

technical debt from low value tests and additional maintenance

effort. You should also pay attention to tests that have been copies

and pasted just to seemingly increase coverage to hit the target

coverage goal.

However, a low code coverage number and the resulting high

number of quality risks increases the likelihood of pushing bad code

into production. SeaLights focuses on highlighting not what code is

covered, but what’s not covered.

There is not one ideal coverage goal that you can universally apply

to all applications/services. The level of coverage should be a

function of:

 › Business impact/criticality of the code

 › How often the code will be modified

 › Lifespan of the code

 › Code complexity

Step 3 – Define Quality Policies

Best Practices for Implementing Software Quality Intelligence with SeaLights 22

Ultimately, the level of code coverage is a business decision made

by the product owners with the domain knowledge. However,

any mandated target goal should be supported by infrastructure

investments to ensure that the correct tooling is made available to

develop, test and govern the process. The most effective way of

setting a target goal is typically to have the team select the value

that makes the sense for their business need.

As the level of code coverage increases the gains in quality diminish

so the focus should be on significant returns, for example getting

from 30% to 70% and maintaining that level of coverage. Applying

the processes outlined in this document, combined with increased

visibility, will automatically raise code coverage levels well beyond

target goals. For example, collaborating on UCCs that SeaLights has

identified, that take place during the code review process, are more

valuable than simply focusing on a coverage goal figure. Embedding

code coverage into your code review process will make code

reviews faster, easier, and prioritised based on Quality Risk.

Best Practices for Implementing Software Quality Intelligence with SeaLights 23

STEP 4 – PERFORM
A RETROSPECTIVE
ANALYSIS

In the “Report” phase of implementing a Software

Quality Intelligence process we provide the ability to

produce sprint retrospectives to aid in the planning

process for subsequent sprints with Test Gap

Analytics (TGA) Reports.

Retrospective analysis is a collaborative exercise led by the

Manager of the sprint. Regular test gap analysis can help

managers improve test planning, keep the primary focus on

testing new code, and also ensure good test coverage. SeaLights

Test Gap Analytics gives clear visibility into the quality risks that

accumulate over time.

PERSONAS AND CADENCE

Step 4 – Perform a Retrospective Analysis

Best Practices for Implementing Software Quality Intelligence with SeaLights 24

 Figure 11: SeaLights

TGA Report

FUNCTIONAL OVERVIEW

Before we review the process let’s look at the SeaLights

functionality that enables this.

Test Gap Analytics identifies all quality risks for a specific time

period, and includes the following:

 › all builds

 › all test stages

 › all code changes

SPRINT RETROSPECTIVES AND PLANNING WITH TEST GAP

ANALYTICS (TGA) REPORTS

Before you start using TGA Reports you should set the scope of the

code that matters to you. You do this by removing data that you

determine will be irrelevant, steps to do this can be found in the

product documentation on “Settings Area”.

Step 4 – Perform a Retrospective Analysis

Best Practices for Implementing Software Quality Intelligence with SeaLights 25

Having defined the data in scope, you can then apply three use cases:

 › Definition of Done for sprint quality - Validate new/modified code

has been tested

 › Monthly Quality Report - Analyze the quality performance of

your applications/teams

 › Test Development - Identify high-risk code areas and create

testing plan

We recommend that the Monthly Quality Report should be used as

the Quality KPI going forward.

Use these settings to define the Test Gaps Analytics reports -

setting the reports here will result in reports that will be available in

the Test Gaps Analytics screen.

ADDING AN APPLICATION TO THE TEST GAP ANALYTICS

1. Select the relevant application

2. Select the relevant branch

3. Select the start date (a future date, e.g. next Sprint start date or

the 1st of the next Month)

4. Select the reporting period in weeks (Scheduled refresh)

5. Click “Save”

In the example shown in Figure 11: SeaLights TGA Report Detailed Test

Gap Analysis you can see how we can look back at a specific date

range to get a view of what gaps remain that may impact quality, and

the specific details of which methods may introduce defects.

If you are using the SeaLights Production Listener you will

have an additional two columns representing Methods Used in

Production and Modified and Used in Production.

Step 4 – Perform a Retrospective Analysis

Best Practices for Implementing Software Quality Intelligence with SeaLights 26

Drilling down, by selecting the application/service, and sorting/

filtering enables you to quickly access the details of specific areas of

your code which will help you identify the areas of code to focus on.

a. Use the “Search” bar to focus on important classes/files (Logic,

Calculation, etc…)

b. Use the “Test Stage” drop-down button to review the untested

files/methods per specific test stage. Focus on areas which are

sensitive to Integration Tests:

i. Priority 0 - Untested by all test stages

ii. Priority 1 - Untested by a specific test stage, i.e. Integration/

Automation/Regression Tests (the rationale of this is to

exclude the unit tests)

c. For legacy applications (low code change volume), focus on

the modified areas

 Figure 12: SeaLights TGA Report

Detailed Test Gap Analysis

Step 4 – Perform a Retrospective Analysis

Best Practices for Implementing Software Quality Intelligence with SeaLights 27

If you have the SeaLights Chrome Extension installed, you can

access more detail in your SCM.

1. Click on the SCM link for the given file you would want to explore

further

2. You will be linked to your code repository and can access the

specified file space within your SCM.

a. You can see the TGA insights in line with your code with the

SeaLights “Code Viewer”, part of SeaLights Chrome Extension

b. SCM’s supported by SeaLights Code Viewer– Github,

BitBucket, Gitlab, TFS/TFVC

3. Use the test stage drop-down button to focus on a specific test

stage

a. e.g. In order to focus on areas which are not tested by Manual

Tests > pick the “Manual Tests” value from the drop-down

4. Review the file and Quality Risks and decide which of these

should be addressed within the current/upcoming Sprint

5. Control and Feedback Loop

a. Reiterate the process in future sprints to ensure that the gaps

have been actually closed by your Dev/QA team and identify if

new test gaps have been created

b. Create a monthly report which includes the relevant sprint

Best Practices for Implementing Software Quality Intelligence with SeaLights 28

STEP 5 – ASSESS
OVERALL QUALITY
TRENDS

In the “Trend Reporting” phase of

implementing a Software Quality Intelligence

process we take a high level look at how

quality risks associated with application code

have developed over time with the SeaLights

Quality Analytics Coverage Trend Reports.

Quality Analytics Coverage Trends Reports are focused on

providing senior management business level visibility into how

quality is developing over time and the impact of different

testing strategies. We recommend that this should be reviewed

monthly at a minimum.

PERSONAS AND CADENCE

Step 5 – Assess Overall Quality Trends

Best Practices for Implementing Software Quality Intelligence with SeaLights 29

Figure 13: SeaLights Quality

Analytics - Coverage Trend Report

FUNCTIONAL OVERVIEW

Before we review the process let’s look at the SeaLights

functionality that enables this.

You can analyze what affects your quality the most, what is the

impact of your different test stages, how your quality trend looks

like, where your quality pain points are and more.

The Coverage Trend Report is the first report available under

Quality Analytics. It displays application code coverage over time.

When you first enter the Quality Analytics page, you will see an

empty list of saved reports. Click on the + button at the right top

corner to create your first report.

Step 5 – Assess Overall Quality Trends

Best Practices for Implementing Software Quality Intelligence with SeaLights 30

Once you create a report you have to click the save button, to add

it to your saved report list. That way you can return to this report

any time to track progress.

The reports you create are private and only available for you. You can

use the copy button to share a specific report, as described below:

Generating A Report

Generating a report is as simple as selecting the app and branch

you are interested in.

You have different options to view the data:

Date Range

The popular options available are: Last month, Last 2 months, Last

3 months, Last 6 months, Last year.

If none of the above is what you need, you can always select a

custom date range. We recommend a minimum of 4 weeks.

Figure 14: Creating a Coverage

Trend Report

Figure 15: Saving a Coverage

Trend Report

Step 5 – Assess Overall Quality Trends

Best Practices for Implementing Software Quality Intelligence with SeaLights 31

Test Stages

A list of all test stages reported for the selected app and branch

during the past year, ordered alphabetically. Each test stage has its

own color that is used in the charts.

You can select / deselect any of the test stages to focus on the

data you want to see in the charts.

Builds

There are two ways to analyze quality data overtime: either look at

all builds of the selected app/branch or only track builds marked as

reference builds (usually these are production/released builds).

 › When looking at all builds, you can select in which intervals you

would like to aggregate the data. Options are: 1 week, 2 weeks, 3

weeks, 4 weeks, 1 month.

 › When tracking only reference builds, you can select/deselect

reference builds from a list (most likely you would like to include

all reference builds).

Understanding The Data

The report includes two charts: Modified Coverage and Overall

Coverage.

Both charts display an aggregated coverage on top of the specific

test stages coverage and include:

 › Y-axis: Coverage % (0-100%)

 › X-axis: Time, according to the filter selection and intervals

Build Intervals

When selecting any of the interval options (1 week, 2 weeks, 3

weeks, 4 weeks, or 1 month) any point in the X-axis and in the

chart line represents an interval. Interval X takes all code changes

from the last build in interval X-1, and takes all coverage from all

related test stages that were reported in all builds within interval X.

(e.g. Interval of 1 month: coverage in July means all code changes

since last build on June and their coverage from all test stages

executions reported on builds within July).

Step 5 – Assess Overall Quality Trends

Best Practices for Implementing Software Quality Intelligence with SeaLights 32

Reference Builds

When selecting the reference build option any point in the X-axis

and in the chart line represents a single reference build. Reference

build X takes all code changes from reference build X-1, and takes

only the coverage from the test stages that were reported to

reference build X (similar to the calculation in the Dashboard).

Modified Coverage Chart

Modified coverage is the coverage of your code changes. Why is it

important to track it? Your quality risks are code changes you haven’t

tested. The higher the coverage, the lower the chances for escaping

defects. You want to see high coverage overtime, to reduce risks.

High modified coverage overtime is an indication for a good quality

culture. It means that any new or modified code is tested.

Figure 16: Coverage Trend Report

(Modified Coverage)

Step 5 – Assess Overall Quality Trends

Best Practices for Implementing Software Quality Intelligence with SeaLights 33

Figure 17: Coverage Trend Report

(Overall Coverage)

Overall Coverage Chart

Overall coverage is the coverage of your entire code. You should

track the overall coverage to make sure that overtime your trend is

positive, mainly by covering new and modified code. You might see

drops in cases you had major code changes with no coverage.

Step 5 – Assess Overall Quality Trends

Best Practices for Implementing Software Quality Intelligence with SeaLights 34

Group Coverage Chart

Group coverage is the coverage for 2 or more applications (for a

specific branch per application) providing a view of their individual

coverage trend and an aggregated coverage trend (modified and

overall coverage).

This report enables managers to track the coverage trend of an

entire product, entire team, line of business, or a professional guild

(for example Front-End, Java, Back-End, etc.).

Sharing The Report

After generating a report you can use the copy button to copy the

report URL to your clipboard to share the report with others.

Figure 18: Coverage Trend

Report (Group Coverage)

Best Practices for Implementing Software Quality Intelligence with SeaLights 35

STEP 6 – OPTIMIZING
EFFICIENCY/
VELOCITY

In the “Optimization” phase of implementing

a Software Quality Intelligence process we

use SeaLights’s capability to provide visibility

into actual test execution time and test

coverage requirements to reduce test cycles

and improve test effectiveness.

This step benefits all teams participating in the Software

Development Lifecycle:

 › Managers can schedule more test cycles by eliminating

unnecessary tests

 › Manual testers get test execution recommendations to

increase their efficiency

 › Developers get more code development iterations as testing

cycle times are decreased

PERSONAS AND CADENCE

Step 6 – Optimizing Efficiency/Velocity

Best Practices for Implementing Software Quality Intelligence with SeaLights 36

Figure 19: Test Optimization

(Testing Details)

FUNCTIONAL OVERVIEW

Before we review the process let’s look at the SeaLights

functionality that enables this.

Test Optimization helps organizations shorten their automated

and manual testing activities by reducing 50% to 90% of their

test execution time. It is a Smart Test Execution Engine that cuts

the testing cycle time by 50% to 90%. It can be tedious and time-

consuming to run a full set of unit, functional, and regression tests

each time a developer commits new code to the repository.

SeaLights Test Impact Analysis (TIA) eliminates much of this

repetitive effort, since it can identify and execute the smallest

subset of mandatory tests—without compromising quality.

Test Impact Analysis provides support for :

 › all types of tests

 › all of your apps and programming languages

Step 6 – Optimizing Efficiency/Velocity

Best Practices for Implementing Software Quality Intelligence with SeaLights 37

SUPPORT FOR ALL TYPES OF TESTS

Through intelligent automation, SeaLights Test Impact Analysis

will optimize and expedite the execution of almost any test type.

Beside unit tests, you can apply TIA to your Continuous Integration

(CI) implementation to automate functional, component, regression,

and end-to-end tests. SeaLights TIA also accommodates manual

testing and UI testing—including those using playback functionality

(such as Selenium).

SUPPORT FOR ALL YOUR APPLICATIONS AND LANGUAGES

Besides integrating with your CI environment, SeaLights TIA

supports various application architectures and programming

languages. From monolithic applications to distributed systems,

from HTTP methods to microservices, SeaLights TIA can

accommodate most any architecture. There’s no need to adapt

your development practices to exploit TIA, since it supports Java,

Node.js, JavaScript, and .NET/C#.

THE SEALIGHTS TEST IMPACT ANALYSIS PROCESS

TIA Outcome

SeaLights Test Impact Analysis produces a list of test

recommendations pertaining to these types of tests:

 › Impacted tests - Tests that correspond to recent code changes.

 › Failed Tests - Tests that did not pass in the previous run.

 › Pinned/Flagged Test - Tests that are marked as important to run

in every test cycle.

 › New Tests - Tests that have never been run.

Step 6 – Optimizing Efficiency/Velocity

Best Practices for Implementing Software Quality Intelligence with SeaLights 38

How does Test Impact Analysis (TIA) work?

These are the general steps in Test Impact Analysis:

1. You: Integrate SeaLights with your CI.

2. You: Install agents, then direct SeaLights to scan the latest build

and the tests that are already running.

3. SeaLights: Correlate each test with the methods that relate to it.

4. SeaLights: Compare any new build content with the content with

which the current test stage was last executed.

5. SeaLights: Identify any tests that are impacted by modified

content and recommend tests.

6. You: Direct SeaLights to execute only the recommended tests,

excluding those that are extraneous.

7. You: Execute “Full Run” tests on a defined schedule (for example,

the first of day/week/month, or N builds) to ensure no tests are

ever overlooked.

8. SeaLights: Analyze and improve using machine-learning

algorithms.

Figure 20: How Test Optimization

(Test Impact Analysis) Works

CODE
(methods)

Changed?

M1 YES

M2 YES

M3 NO

M4 NO

M5 NO

M6 YES

M7 NO

M8 YES

M9 YES

M10 NO

–

Mx YES

CODE
(methods)

M1

M2

M3

M4

M5

M6

M7

M8

T9

M10

–

Mx

CODE
(full regression)

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

–

Tn

Step 6 – Optimizing Efficiency/Velocity

Best Practices for Implementing Software Quality Intelligence with SeaLights 39

PRODUCT WALKTHROUGH

Follow these steps to configure TIA:

1. Click Test Optimization on the top right end of the screen.

2. The default configuration is that automatic test selection is “Off”

(The TIA analysis will provide a list of test recommendations

without executing the recommended test list).

3. Choose the application name(s) and the relevant branch(es).

4. Choose the date range of the TIA.

5. Select the test stage(s) to be analyzed

Figure 21: Accessing Test

Optimization

UNDERSTANDING THE DATA

The high-level report includes 4 main levels of information:

1. Summary view — Iists all of your applications, sorted by the

total time saved (for each app and each test stage).

2. Application details — lists the app name, branch name, analysis

period, and the relevant test stage.

Step 6 – Optimizing Efficiency/Velocity

Best Practices for Implementing Software Quality Intelligence with SeaLights 40

Figure 22: Test Optimization

(High-level Report)

3. Summary — includes aggregate information:

a. Average run-time and Average # of tests (with or without

tests selection)

b. Average time saved and Average # of tests reduced (with or

without tests selection)

c. Estimated total time saved for the analysis period

Step 6 – Optimizing Efficiency/Velocity

Best Practices for Implementing Software Quality Intelligence with SeaLights 41

Figure 23: Test Optimization (Test

Execution Details)

4. Test Execution details - including per-build information:

a. Build number and build date

b. Recommended tests that should be run

c. Estimate of the run time for each test

Test Recommendations Report

This report presents a list of the impacted tests for each build.

NOTE: This information is also available through the SeaLights API.

USING THE DATA

Identifying Optimization Opportunities

While the TIA page shows the applications in two separate lists,

separated by which application has test stages with TIA on, the entire

application list is always shown, with filters on the left side of the page.

The applications are marked with a blue circle (TIA fully on),

gray circle (TIA off) or partial circle (some of the test stages are

with TIA on). Use the status to identify which applications have

some optimization applied to them (which you should still review

regularly) and which applications are candidates for optimization.

Step 6 – Optimizing Efficiency/Velocity

Best Practices for Implementing Software Quality Intelligence with SeaLights 42

Execute Only Recommended Tests

You should direct SeaLights to execute only the tests that are

recommended, excluding any tests that SeaLights has excluded

because the tests do not cover code that is new or has been

modified, tests that have passed in the previous run, etc..

Regularly Execute “Full Run” Tests

However, you should find time to regularly run all tests to ensure

that no tests are ever overlooked.

Figure 24: Test Optimization (Test

Recommendations)

Best Practices for Implementing Software Quality Intelligence with SeaLights 43

SUMMARY

In this guide we have shared some

recommendations for best practices for

using SeaLights and the steps to provide a

foundation for supporting and accelerating our

customer’s quality strategies, specifically:

 › Identify New/Modified Code in the background without

impacting existing development

 › Guide the software development team to the best decisions

 › Determine release readiness, identify and prevent untested

code changes making it to production

 › Direct teams to where to develop and execute the minimal

number of tests

These best practices are quite generic, and we recognize that

customers have specific requirements that will need these

best practices to be adapted. We welcome feedback from our

customers on their experiences and requirements so we can

improve SeaLights’s support for additional common use cases

out of the box, and evolve this document to include specific

customer experiences to share with other organizations with

similar challenges.

Best Practices for Implementing Software Quality Intelligence with SeaLights 44

SeaLights Home Page:

https://www.sealights.io/

White Papers and e-Books:

https://www.sealights.io/learn/

Webinars:

https://www.sealights.io/webinars/

SeaLights Blog:

https://www.sealights.io/blog/

What’s New at SeaLights:

https://www.sealights.io/whats-new/

How-to Articles:

https://sealights.atlassian.net/wiki/spaces/SUP/pages/1376261/

How-to+articles

Learn About SeaLights:

https://sealights.atlassian.net/wiki/spaces/SUP/

pages/802652190/Learn+about+SeaLights

USEFUL LINKS

